Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling.

نویسندگان

  • Chunfang Li
  • Shuhui Jiang
  • Xinying Zhao
  • Hao Liang
چکیده

In this paper we report a facile method for preparing co-immobilized enzyme and magnetic nanoparticles (MNPs) using metal coordinated hydrogel nanofibers. Candida rugosa lipase (CRL) was selected as guest protein. For good aqueous dispersity, low price and other unique properties, citric acid-modified magnetic iron oxide nanoparticles (CA-Fe₃O₄ NPs) have been widely used for immobilizing enzymes. As a result, the relative activity of CA-Fe₃O₄@Zn/AMP nanofiber-immobilized CRL increased by 8-fold at pH 10.0 and nearly 1-fold in a 50 °C water bath after 30 min, compared to free CRL. Moreover, the immobilized CRL had excellent long-term storage stability (nearly 80% releative activity after storage for 13 days). This work indicated that metal-nucleotide nanofibers could efficiently co-immobilize enzymes and MNPs simultaneously, and improve the stability of biocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of a Novel Magnetic Recoverable Support on Kinetic, Stability and Activity of Beta-amylase Enzyme

In this paper, covalent immobilization of beta amylase enzyme on the surface of modified magnetic nano particles (ZnFe2O4@SiO2-NH2) is reported. For doing so, at first, the magnetic nanoparticles of ZnFe2O4 were synthesized by chemical co-precipitation method and then tetraethyl orthosilicate (TEOS) and 3-aminopropyltriethoxy sil...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

Effects of cadmium chloride as inhibitor on stability and kinetics of immobilized Lactoperoxidase(LPO) on silica-coated magnetite nanoparticles versus free LPO

Objective(s): Enzyme immobilization via nanoparticles is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto silica-coated magnetite nanoparticles to improve enzyme properties in the presence of cadmium chloride as an inhibitor. Materials and Methods:  The process consists of the ...

متن کامل

Simple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability

We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2017